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Abstract

We describe a model-based vision system to assist the pilots in landing maneuvers under
restricted visibility conditions. the system has been designed to analyze image sequences obtained
from a Passive Millimeter Wave (PMMW) imaging system mounted on the aircraft to delineate
runways/taxiways, buildings, and other objects on or near runways. PMMW sensors have good
response in a foggy atmosphere, but their spatial resolution is very low. However, additional data
such as airport model and approximate position and orientation of aircraft are available. We
exploit these data to guide our model-based system to locate objects in the low resolution image
and generate warning signals to alert the pilots. We also derive analytical expressions from the
accuracy of the camera position estimate obtained by detecting the position of known objects in

the image.
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I. Introduction

Federal regulations specify the minimum visibility conditions under which airlines may take
off and land. These minima are a function of the types of airplane and airport equipment.
Therefore, there is a great deal of interest in imaging sensors which can see through fog and
produce a real world display which, when combined with symbolic or pictorial guidance
information, could provide the basis for a landing system with lower visual minimum capability
than those presently being used [1].

Since the energy attenuation in the visible spectrum due to fog is very large [2] (Fig.1),
sensors are being designed to operate at lower frequencies (e.g. 94 GHz) where the attenuation is
lower providing the ability to see through fog. NASA Langley Research Center, in cooperation
with industry, is performing research on an on-board imaging system using a passive sensor
operating at this frequency. Images from such sensors are of very low spatial resolution (Fig.2).
However, additional supporting information in the form of knowledge about the airport and the
position, orientation and velocity of aircraft is generally available. Thus a model-based image
analysis approach is feasible to segment the image and to detect and track objects on the ground.
Information extracted from such an analysis is useful to generate warning signals to the pilot of
any potential hazard. This paper describes such a model-based technique, which makes use of a
priori information about the geometric model of the airport and camera position and attitude data
provided by the Global Positioning System (GPS) and other instruments.

The geometric model of the airport contains positions of the runways/taxiways and
buildings, the navigation instruments provide the position of the aircraft, and on-board
instruments provide the orientation of the aircraft (yaw, pitch and roll). We use this information
to define regions of interest in the image where important features such as runways/taxiways, the
horizon, etc. are likely to be present. Edges corresponding to these features of interest are
detected within these regions. After delineating regions representing runways/taxiways, we look

for objects inside and outside these regions.
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Fig. 2. The Passive Millimeter Wave image.

The data from radio navigation instruments are known only upto a certain accuracy
depending upon the type of radio navigation instruments. For example, GPS data is updated once

every second and it is likely that a few such updates are missed making camera position data to be
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a few hundreds feet off. On-board instrument data is generally useful to obtain more accurate
camera position data than the GPS-based data. An alternative approach is to use the information
about the location of detectzd objects in the images with known world coordinates (e.g.
intersection of runways/taxiwavs, corners of buildings, etc.) to obtain an improved estimate of the
camera position. This requires an analytical study of the relationships among the camera
parameters, the resolution of the images, and the distances between the aircratt and objects.

In Section II we present a block diagram of the complete system. In Section II we
describe the analytical model that establishes the relationship between the position, orientation and
other physical parameters of the camera and the attributes of the captured images. This model is
useful to calculate the accuracy of camera position estimation using image based features. In
Section IV we present the method for defining the regions of interest in the image using the
camera parameters and airport model. Section V includes image processing steps that are used to
find regions corresponding to major features in the image and to detect objects in these regions.
Experimental results are presented in Section VI. We conclude the paper with a summary and a

briet description of future work.



II. System Description

In this section, we describe the functions of various modules of the system shown in Fig.3
and the interaction between them. The input model of the airport contains positions of the
runways/taxiways, and buildings. The model transformation module will take this model and the
camera state information (position and orientation) as inputs to define the regions of interest in
the image plane.

The image processing algorithms in the feature detection module operates within these
regions of interest to detect the edges of the runway, horizon, etc. in the image. An edge is fitted
to the edge pixels if enough edge pixels are found within the regions of interest. The module

outputs parameters which define major regions in the input image.

Image +Airport Model
Airport Warning
Model | Model Feature Object Motin Signals
Transformation » Detection B Detection [P Estimation — 9
Display Display
Runway Objects
Camera Camera
Camera State State
State Camera |
State
Estimation <

%

GPS On-board Instrument

Fig. 3. System block diagram.
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The object detection module detects objects in the image using different thresholds for
each region. For example, since detection of objects on the runway is extremely important, a
lower threshold is used to flag every object even if the contrast is low whereas a higher threshold
is used to detect objects which are outside the runway such as buildings, etc. Locations of
detected objects with known world coordinates is useful to estimate camera state parameters.

The motion estimation module uses dynamic scene analysis methods to estimate camera
state parameters as well as to detect velocities of objects on the ground. The outputs from this
module will be useful to detect potential collisions and generate warning signals as appropriate.

The camera state estimation module integrates information obtained about the position
and velocity of the aircraft from various sensors and modules and outputs necessary data to the

model transformation module.



III. Accuracy of Camera State Estimation from Image-based Features

As we need to use the camera state estimated from locating features of known objects in
the image during the period when the GPS is not updated, it is necessary to know the accuracy of
such estimated positions and the factors that decide the accuracy. Hence, an analytical model that
establishes the relationship between the camera parameters and the attributes of captured images
is necessary for guiding the image analysis system. Sensor positional parameters include range
(distance from the aircraft to the runway threshold), cross range (distance from the aircraft to the
runway center line), altitude, and pitch, roll and yaw angles. Sensor imaging attributes include the
number of pixels in the image and the optical angular view measured in degrees. We derive the
inter-relationships among these parameters. Using these relationships we calculate the accuracy
of the estimate of camera position based on a minimum resolvable movement of features by one
pixel in the image. We obtain these accuracies for three different types of cameras (PMMW,

FLIR, HDTV) at six ranges.

A. Analysis: Throughout the analysis, for convenience, we assume that the sensor is located at
the center of gravity of the airplane. Hence we can use the terms sensor position and aircraft
position interchangeably. We also neglect the effect of curvature of the earth. The system of
reference axis that forms the basis of system of notations used to describe the position of the
sensor is shown in Fig.4. The figure shows an airplane with three mutually perpendicular axes —
pitch, roll and yaw — passing through the center of gravity of the airplane. The image plane is
assumed to be perpendicular to the rolling axis with its vertical and horizontal axes coinciding
with the yawing and the pitching axis of the airplane, respectively.

Fig.5 shows an imaging situation during landing where the aircraft is at (X,, Y., Z.), with
pitching angle 6, zero yaw and zero roll angle. Let o =90° - 8. The field of view of the camera is
determined by two viewing angles: Aa defined in the same plane as 6 and AP at right angles to A

(Ao determines the vertical extent of the image and A its horizontal extent). Even though the
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image obtained by the sensor is always a rectangle, the ground area captured by the sensor is a
trapezoid ABCD whose side length and area depends on Ao, AB and various other sensor
parameters like position, orieatation etc. Note that a pixel in the image plane corresponds to a

patch on the ground plane. We refer to this as a pixel-patch (see Fig.6).

toterct o ! '
ercl or 4\/ v lengrtuginel or

Seching Gxis .
o ¥ ro“mg axis

I X i
. Verticel or yawing axis
World coordinate system

Fig. 4. Airplane-body axis (reproduced from "Airplane Aerodynamics"
by Dommasch and Danieol Otto, 1967).

Consider a point feature which has been detected at some pixel (p, g). Let the actual
world coordinates of this feature be (P, O, 0). since a pixel represents a patch on the ground, the
camera could change in its position by certain amount while still retaining the image of the feature
at the same pixel (p, g). Hence a camera pose estimation by passive triangulation will always give
the same camera pose for nearby camera positions unless the change in camera position is large
enough for the feature to be observed in the neighboring pixel. We define this minimum change in

camera displacement as the sensitivity of the camera. Note that this is a measure of accuracy of
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camera position estimate and is a function of the camera, image size in number of pixels, angular
resolution, and the pixel location (p, g) in the image plane.

VA

v><:
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v><

D

Fig. 5. Image obtained by the sensor is projected towards the ground.
Shaded area is the ground area covered by the sensor.

Let Ny and N, represent the number of pixels in the vertical and horizontal directions,
respectively. The pixels are numbered -N, ..., 0, ..., N,/2-1 in the vertical direction and -Nj, ..., 0,
... N)/2-1 in the horizontal direction. The rolling axis of the plane is assumed to pass through the
bottom right corner of the patch on the ground plane which correéponds to the center pixel in the
image plane. Other pixels are referenced in a similar manner. The coordinates of the reference

corner of the ground area covered by a pixel (p, g) can be estimated by the following relations.

A
X=X.+2Z, tan(oc+pN—a),

X
B Z, AB (1
Y= YC +——T[an(qu')

cos(a +pN—)
X
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For a non zero rolling angle ¢, the ground coordinates (X', Y') which corresponds to a pixel (p, g)

in the image plane are obtained by replacing (p, g) in the above equation by (p’, '), where

p'= pcosh—gsin ¢, and @
q' = psind+gcoso.
Since a pixel-patch is referenced by its bottom right corner of the pixel, the other three corners
become the reference of its three neighboring pixels-patch as shown in Fig.7. Thus, the four
corners of this pixel-patch (X;,Yi' ), i =1, 2, 3, 4, are obtained by using Eq. (1), where (p, q) are
replaced by ( p'l-,q',-), where
pi = picos¢—g;sin,

o (3)
gi = p; S+ g; cos O,
A Xp P
(X%,%) -
G, 1 (X,, 1) (X, 7,) (X;.Y5)
\ L jo
L /
S VT —mao0o ~— | | | ]
Q{ﬁ % %) x5 %)
X, %) (X1, Y1) (b g+1) ()
Fig. 6. Ground area covered by the sensor. Fig. 7. A pixel (p, g) projected
Each small trapezoid corresponds to towards the ground.

a pixel in the actual image.

Eqg. (1) explicitly gives the relationship between the camera parameters (X, Y., Z.), 9, 0,
and a ground point corresponding to a pixel (p, g). We are now interested in computing the
sensitivity of the imagery sensor. This is defined as the minimum change in a camera parameter
that would move a fixed ground point to the next pixel in the image plane. We obtain this by
taking the partial derivative of X'l and Y1 with respect to the corresponding parameters. For

example,
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This derivation is an approximation to the amount of change in X; for unit change in X,.
Thus we estimate that the amount of change in X, in order to change X, to X,, or ¥, to ¥, (which
define the corners of adjacent pixels) as
X, - X Y,-F
s¥ =X —X) 1), and ¥ ~Ta-h) 1).

c X c Y
D c DXC

5)

Note that S,’;C =0, as expected. Sensitivity with reference to other parameters is defined in a

similar manner. These are summarized in Table L

Sensor sensitivity is a function of various sensor parameters and sensor attitudes. Since
the sensor plane is inclined to the ground plane, the sensitivity varies in the vertical and horizontal
direction along the sensor plane and hence is a function of pixel number (p, g). Equivalently, the
accuracy of estimation of sensor position using ground truth data is a function of pixel position as
well as other parameters. For a given range, the estimation using features that are observed at the
top half of the sensor are less accurate because of the large ground area represented by these
pixels. Also for a given p, the accuracy decreases as we move towards the border of the sensor in
the horizontal direction. In summary, the accuracy of estimation is a function of sensor

characteristic and the ratio of the sensor view angle to the number of pixels in the image.

B. Quantitative Results and Discussions: The sensitivity analysis described in the previous

section was applied to three different sensors at six different positions (Table II). Sensitivities

S ;)((C, S%/; , and S%(C at the aim point (i.e., p=0, g=0) for various sensor positions are plotted in
Figs. 8, 9, and 10, respectively. Note that Sgc is larger than S%(C at (0, 0) and hence a feature

would move to the next horizontal pixel before it moves to the next vertical pixel. Thus only § %(C
is important.
As expected, the sensitivity is the best for the sensor with the highest pixel resolution.

Sensitivity also improves as the sensor is moved closer to the ground. It becomes poor tfor the



11
features that are located at the far end of the vertical axis (top ot the sensor), i.e., for the objects
that are located at the far end of the runway. Thus, as expected, the position and velocity of the
aircraft can be computed to a “etter accuracy by knowing the position of stationary objects on the

ground that are closer to the aircraft.

Table I. Sensor positional sensitivity equations.

SPP Sensor Sensitivity at (p, q) Sensor Sensitivity at (0,0) with ¢=0
X, s¥ 2Z.sin(cos¢-Aa/N,) 2Z.sin(Ao./N,)
‘ cos(2o+Aa/ N, (2p+1)cosdp—2gsing) +1 cos(2a+Aa/N,)+1
S)};r oo =)
Y/‘ S)),i ] oo
Sy, {Z, tan(gaAB/ N,/ cos(oL+ pyAc/ Ny )} — 2Z, sin(AB/ N,)
{Z, tan(gAB/ N,)/ cos(a+ pyAct/ N} cosocos(AB/ N,)+1
Z,. s¥ S¥ /tan(o+ pyAa/ Ny) 2Z,sin(Aa/ N, )/sin(2Qo./ N )
S S§, cos(a+pyAa/ Ny)/ tan(giAB/ N,) o0
8 s& SE cos? o+ piAo/ Ny) /! Z, sin(Aac/ N,)/{cosa/cos(o.+ Ao/ N, )}
Sg S}: cos2 (0L + piAct/ Ny) o0
Z, tan(qAB/ N )sin(a+pAa/ N,)
X
o Sa oo

2Z, sin(cos¢-Aa/ N,)
cos(2o+Aa/ N, (2p+1)cosd—2¢gsin¢) +1
Se S} | Zc(A3B3G + BSA | 80) o

A=1/cos(0+pjAa/ Ny ); B=tan(q;AB/ N, ); 8B/ 3¢ = (pcoso—gsind)AB/ Ny )cos® (i AB/ N, );

BA /80 = tan(a + pjAc/ Ny )(—psing— gcos9)(Aa/ Ny )cos(a+piAa/ N, ); o= 90° +6;
(P.41)=(P.q); (P4,d4) = (P,q+1); Py = Py cOSO =gy Sin§; pg = p4 cOSO— gy sin 0 gy = py sin ¢ +g; cos);
g4 = P4 SinQ+q4cosQ;

SPP: Sensor Positional Parameters Sensor Characteristics
(X..Y.,Z.) Sensor position Vertical ~ Horizontal
0 Pitch angle Field of view Ao AB

] Roll angle Number of pixels N, N,

Sensitivity: Minimum change in the sensor positional parameters (X, Y, Z, 6 , ¢ ) that will make the object to
appear in the next pixel either in the vertical (X: hence called as sensitivity in x direction) or in the horizontal (Y:

hence called as sensitivity in y direction) direction of the sensor plane. Sij : Sensitivity in the direction 'j' due to
the sensor positional parameter 'i' computed at pixel (p, g) in the image plane.
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Table II.
Sensor Characteristic Sensor Positions
Sensor type Pixel Field of view (pitch = -3.0°, Roll = 0°, Cross range = 0 ft.)
(HxV) (HxV) deg. Location Range in ft. Altitude in ft.
HDTV 1920x1035 30x24 Threshold 0.0 50.0
FLIR 512x512 28x21 CAT II-DH 908.1 100.0
PMMW 80x64 27x22 CATI-DH 2816.2 200.0
Middle Marker  4500.0 288.2
1000" Altitude 18081.1 1000.0
Outer Marker 29040.0 1574.3
Sensitivity in direction of Range Sensitivity in the direction of Cross Range
10* 29040.0 0T
18081.1 E
/ 3 29040.0
4500.0 7 18081.1
3 28162 2
10 10° =~
= 9081 o 3 4500.0
B B 3 2816.2
i‘ oo “i B 908.1
G 5 g 00
% %]
10 g
lIllll!v.ll!l|l'#v[l!!llll!III|!Tlll| 10’1 ||III]!II!I‘I’ITI[IllI1!||1llVIIVIII“I‘
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.00 0.05 0.10 0.15 0.20 0.25 0.10 0.35
Resolution (degrees/pixel) Resolution (degrees/pixel)
Fig. 8. Fig. 9.
Sensitivity in the direction of Altitude
10
20040.0
18081.1
- to* 4500.0
5 2816.2
= 908.1
‘E\ 10 0.0
“Z‘ =
%
1
16! ~rrr e
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Resolution (degrees/pixel)

Fig. 10.
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The results indicate that the accuracy of camera state estimation would be no better than

the GPS data unless a high resolution sensor is employed. Note that these results do not consider
potential improvements that can be obtained by motion stereo techniques using a large number of
image frames. We are presently investigating the possibility of improving the accuracy of the

computed sensor positional parameters by extending our analysis using this method.
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IV. Model Transformation
As noted earlier, the PMMW images are low contrast-low resolution images. Simple edge
detection techniques on these images generate many noisy edge pixels in addition to those
belonging to the true edges such as runways, sky etc. This problem is alleviated by defining
regions of interest on the ground plane for each feature in the model and to perform 3D to 2D

transformation. It also defines a region in the image plane where the horizon line should occur.

A. Defining Regions of Interest for Runway Edges: The error in the expected location of a
feature and its actual position in the image depends on several factors, most notably the accuracy
of the camera position parameters used by the model transformation module. Furthermore, it is
evident from our earlier analysis (Fig.6) that the ground area covered by a pixel is a function of
the position of the pixel in the image. Thus it is not reasonable to define the search space for each
feature as a fixed number of pixels centered around the expected location in the image plane.
Hence we define the region of interest in the 3D space and then apply transformation to get the
corresponding region of interest in the image. The extent of the search space in the 3D space is
determined by the estimated error in camera positional parameters (which are based on GPS and
on-board instrument data).

The geometric model of the airport contains a sequence of 3D coordinates of the vertices
of the runway/taxiways, which forms a polygon with n vertices:

runway = (P}, i=1,2, .., n,

where P; = (X;, Y;, Z;)T is one of the vertices of the polygon. Note that Z; = 0. P;P;,; specities
an edge of the polygon. The region of interest is defined as a rectangle on the ground which
encloses the edge. Theretore, each edge P;P;, ; of the polygon is associated with the region of
interest defined by four points b; = (X, Y3, Zj), j= 1, ..., 4,and Z; = Z,.

The width of the region of interest is defined as a function of the width of the

runway/taxiways, w, accuracy of the GPS data, g (0 < g < 1I), and the accuracy of the on-board
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instrument, d (0 £ d < 1). Note that g and d are determined by the specification and

characteristics of these instruments. This relationship is given by

width(w,g,d) = 0.2w ) (6)
gd

Note that the minimum width is 0.2w when g=d=1I, which corresponds to * /0% potential
displacement of runway edge feature. To limit the search area from being a large fraction of the
runway width we limit the search width to 0.4w even if gd<0.5.

After defining the region of interest for each edge, 3D to 2D coordinate transformation is

performed using the tollowing homogeneous equation [3]:

Ap X
Agq Y
= PRT| _ |, 7
Ar V4 @
A 1
where
1 0 0 0]
01 00
P=lo 01 o} (8)
L 0 0 1
f ]
—cos\ycosB —sinycos9 —sin® 0
cosysinOsin¢p—sinycos¢d sinysinOsind+cosysing —cosBsing 0 i ©
= , an
cos y sin @ cos ¢+ sin Y sin ¢ siny sinBcos ¢ —cosBcos¢ 0 :
0 0 0 1
1 0 0 -X,
01 0 -Y _
T = (10)
001 -Z
000 1

are the perspective projection, rotation and translation transformation matrices, respectively, and f
is the focal length. After perspective projection, we need to consider the following special cases:
A. the region of interest degenerates to a line in the image plane because the region is t00

far from the camera,
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B. the region of interest in the image plane becomes very large because the edge is very

close to the camera.
For case A, a minimum width in the image plane is assigned in order to provide some search space
for the feature detector. For case B, a maximum width in image space is defined to further
restrict the region. In our experiment, for the aforementioned extreme cases, the minimum and

maximum width of a region of interest are set to be 10 and 20 pixels, respectively.

B. Defining Search Space for Horizon Line: When the vertical angular field of view is larger
than 20, then a horizon line appears in the image (Fig.11). The horizon is an important clue in
estimating the camera orientation since it gives the roll angle information directly. Search space in

the image plane is defined to locate this line.

A Ao
2 image plane A /horizon
A '/
H
0_)/ c ftan® q
P
optical axis
Aa
B ftan(——z‘—)
—
image plane

Fig. 11. Horizon line in the image.

Without loss of generality, consider the situation when the aircraft is heading towards the
X axis of the world coordinate system. Assume the camera is located at point D (see Fig.11) with
pitch angle 6, and zero yaw and roll angles. Point A and B are on the top and bottom edge of the
image, respectively. The horizon will then appear horizontally in the image plane as shown. The

distance between this line and the center line of the image is given by HC = ftan@. Since in the
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above analysis roll angle has been assumed to be zero, the horizon appears parallel to the
horizontal axis of the image plane. For any non zero roll angle, a simple roll transformation on
this line will give the horizon in the image. The associated region of interest is defined to be 10
pixels centered around the expected horizontal line in the image.

It is possible for the projection of the region of interest onto the image plane to be partially
outside the image boundary. In such cases, wee need to clip these regions so that the search
space always remains within the confines of the image. This is done using the polygon clip and
fill algorithm (4]. The regions of interest for both thé runway and the horizon of the image

sequence used in these experiment are shown in Fig.12.

Fig. 12. Regions of interest.
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V. Runway Localization and Object Detection
A. Runway Localization: In this part, we search for the expected features within the region of
interest defined by previous module. This will significantly reduce the search time and also avoid
spurious responses which are likely in such a low resolution input image. An accurate localization
of the feature is necessary for estimation of motion parameters and camera pose.

A Sobel edge detector is applied té the sensor image. We then select one of the four
scanning directions (-45°, 0°, 45°, 90°) which is approximately orthogonal to the direction of the
expected edge. Along each scan line we locate pixels with greatest edge strength. As the runway
edge is supposed to be a straight line we fit a best line to these pixels. We also associate a
measure of confidence for these detected edges based on the number of edge pixels detected

along the line.

B. Object Detection: In this part, the region inside and outside the runway/taxiways are
separately checked for the existence of any stationary or moving objects. The image has three
homogeneous regions, namely the sky, the runway/taxiways and the region outside the
runway/taxiways. Any objects on or outside the runway/taxiways are expected to have some
deviation in graylevel from their respective homogeneous background. Hence, we use histogram-
based thresholding for object detection. The thresholds which determine this deviation are set to
be different for different regions.

We generate a mask image which represents three homogeneous regions. Using this mask
image, we generate the histogram and compute its standard deviation for each region separately
(except for the sky region). The threshold value is determined as a function of the mean and the
standard deviation, and any area which has graylevel lower than the threshold is considered as
object regions. An object is assumed to have a reasonable size. This size restriction on the object
can be used to ignore spurious responses resulting from the thresholding. Each object is then

labeled based on 4-connectivity.
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VI. Experimental Results

We have tested our a'gorithm on a test image provided by the TRW. This image was
obtained using a single pixel camera located at a fixed point in space (a camera with an array of
pixels is under development). The camera was mechanically scanned to obtain a 50x150 pixel
image. This is the image shown in Fig.2. We were also provided with the model of the runway
giving the 3D world coordinates of the runway corners, locations of the buildings etc. Using
these data and the single image, we created a sequence of 30 frames to simulate the images from a
moving camera. Frames 1 (original), 5, 10, and 15 from this sequence are shown in Fig.13(a).
Edge enhanced images corresponding to these frames are shown in Fig.13(b). The regions of
interest defined on these frames are shown in Fig.13(c). Delineated features superimposed on the
images are shown in Fig.13(d). Although all the edges are detected accurately in the example, it
is likely that one or more edges of a polygon are not detected. To handle such situations we
associate a degree of importance for each edge. For example, runway edges which are closer to
the camera must be detected in the image whereas those corresponding to the far end of the
runway are usually very short and may or may not be detected. And overall confidence measure

is associated with each detected region.
Objects detected on the runway in Frame 1 and those outside the runway are shown in
Fig.14. Warning signals are generated for each object on or near runway. Algorithms to track

these in successive frames and estimate camera state using motion stereo are under development.
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VII. Future Work and Conclusions

In this paper, we have described a vision-based system to assist pilots during landing under
restricted visibility conditions. The images obtained by a passive sensor is processed to detect
major regions such as runways and objects inside and outside these regions. The image resolution
is very poor, however, additional information in the form of airport geometric model, and camera
position parameters are available to guide the segmentation algorithms. Objects are detected in
each of these regions using thresholds computed separately for each region. Our results show
that the model-based feature detection approach is quite accurate and the homogeneity
assumption on regions for object detection is reasonable. The success of this model-based
approach clearly depends upon the accuracy of the camera position parameters used to detine
search regions in the image. One of the methods for updating camera position information is
triangulation using known objects. We have derived the accuracy of such an update as a function
of camera characteristics and image parameters.

At this stage, our system is able to detect the runway/taxiways and the objects inside and
outside the runway/taxiways in each frame and to report their positions in the image. Since we
have a moving camera, moving object situation, even the stationary objects appear to be moving
in the image. Work is in progress to estimate the egomotion of the camera, to distinguish moving
objects from stationary ones and to estimate the velocities of the moving objects. There is also
potential to obtain more accurate camera state estimation using motion stereo from image

s‘equences compared to using GPS data alone.



Frame 1

Frame 5

Frame 10

Frame 15

Fig. 13. The input images (a), edge images (b), regions of interest(c), and

detected features superimposed on the original images (d).



*Kemunt oYy (IyILr) OpIsInO pue (1J9]) SPISUI $193[q0 PN HT 81

(penunuoo) g1 314

P




23

References:

[1]. Hatfield, J.J. and R.V. Parrish, "Advanced Cockpit Technology for Future Civil Transport
Aircraft," Proc. 11th Arnual IEEE/AESS Dayton Chapter Symposium, Dayton Ohio, Nov.
1990.

[2]. Young, S.K., R.A. Davidheiser, B. Hauss, P.S.C. Lee, M. Mussetto, M.M. Shoucri, and L.
Yujiri, "Passive Millimeter-Wave Imaging," TRW Space & Defense —  Quest, Vol. 13, No.
2, pp. 3-20, Winter 1990/1991.

[3]. Smith, P.N. "NASA Image Data Base User's Guide," NASA Ames Research Center, Moffett
Field, CA., Version 1.0, 1990.

[4]. Foley, I.D., A. van Dam, S.K. Feiner, and J.F. Hughes, "Computer Graphics — Principles
and Practice," Addison-Wesley Publishing Co., 2nd ed., 1990.



